OWASP Top 10
11 TopicsMitigating OWASP Web Application Risk: Vulnerable and Outdated Components using F5 BIG-IP
This article provides information on the Struts 2 vulnerability (CVE-2017-5638) , one of the dangers posed by vulnerable and outdated components. It highlights how a single unpatched vulnerability in a widely used framework can lead to catastrophic consequences, including data breaches, server compromise, and damage to an organisation's reputation and how we can protect it using F5 BIG-IP Advanced WAF.52Views0likes0CommentsMitigating OWASP Web App Risks: Software and Data Integrity Failures using BIG-IP Advanced WAF
This article gives detailed information of OWASP top 10 Web Application security series, providing an in-depth knowledge on OWASP Software and Data Integrity attacks and mitigate methods using F5 BIG-IP Advanced WAF.226Views1like1CommentMitigating OWASP Web Application Security Top 10 risks using F5 NGINX App Protect
The OWASP Web Application Security Top 10 outlines the most critical security risks to web applications, serving as a global standard for understanding and mitigating vulnerabilities. Based on data from over 500,000 real-world applications, the list highlights prevalent security issues. The 2021 edition introduces new categories such as "Insecure Design" and "Software and Data Integrity Failures" emphasizing secure design principles and proactive security throughout the software development lifecycle. For more information please visit: OWASP Web Application Security Top 10 - 2021 F5 products provide controls to secure applications against these risks. F5 NGINX App Protect offers security controls using both positive and negative security models to protect applications from OWASP Top 10 risks. The positive security model combines validated user sessions, user input, and application response, while the negative security model uses attack signatures to detect and block OWASP Top 10 application security threats. This guide outlines how to implement effective protection based on the specific needs of your application. Note - The OWASP Web Application Security Top 10 risks listed below are tested on both F5 NGINX App Protect versions 4.x and 5.x A01:2021-Broken Access Control Problem statement: As the risk name suggests, Broken Access Control refers to failures in access control mechanisms that lead to a vulnerable application. In this demonstration, the application is susceptible to “Directory/Path Traversal” via the URL, which allows unauthorized access to sensitive information stored on the server. Solution: F5 NGINX App Protect WAF(Web Application Firewall) offers an inherent solution to the “Directory/Path Traversal” vulnerability discussed, through its “app_protect_default_policy” bundle. This policy, which will be active by default when “App Protect” is enabled in the nginx configuration, helps prevent Directory/Path Traversal attacks by validating the values provided to the “page” key in URL. The attack request is recorded in the security log, indicating that the attack type is Predictable Resource Location, Path Traversal. The request was blocked, and the signatures responsible for detecting the attack are also visible. Note: The security log shown in the image below is not the default log configuration but has been customized by following the instructions provided in the link. A02:2021-Cryptographic Failures Problem statement: Earlier this attack was known as “Sensitive Data Exposure”, focusing on cryptographic failures that often result in the exposure of sensitive data. The “Juice Shop” demo application, as demonstrated below, is vulnerable to sensitive information disclosure due to the insecure storage of data, which is displayed in plain text to end users. Solution: F5 NGINX App Protect WAF provides best in class “Data Guard” policy, which can block as well as mask (based on policy configuration) sensitive information displayed to the end users. After applying the policy to mask the sensitive data, it’s observed the sensitive information which was visible(Fig. 2.1) is masked now. The attack request is recorded in the security log, indicating that the dataguard_mask policy is triggered, and the request was alerted. . 2.4 – Request captured in NGINX App Protect security log A03:2021-Injection Problem statement: An injection vulnerability arises when an application fails to properly handle user-supplied data, sending it to an interpreter (e.g., a database or operating system) as part of a query or command. Without proper validation, filtering, or sanitization, attackers can inject malicious code, leading to unauthorized access, data breaches, privilege escalation, or system compromise. For example, the DVWA demo application shown below lacks input validation, making it vulnerable to SQL injection attacks that can compromise confidential data. Solution: F5 NGINX App Protect WAF has a robust set of attack signatures which are pre-bundled in default policy. The SQL-Injection vulnerability discussed above can be prevented by enabling App Protect which has around 1000+ signatures related to variety of Injection attacks. The attack request is recorded in the security log, indicating that the attack type is SQL-Injection. The request was blocked, and the signatures responsible for detecting the attack are also visible. A04:2021-Insecure Design Problem statement: The growing reliance on web applications exposes them to security risks, with insecure design being a key concern. For example, a retail chain’s e-commerce website lacks protection against bots used by scalpers to buy high-end video cards in bulk for resale. This causes negative publicity and frustrates genuine customers. Implementing anti-bot measures and domain logic rules can help block fraudulent transactions, with F5 NGINX App Protect providing effective protection against such attacks. Solution: Secure design is an ongoing process that continuously evaluates threats, ensures robust code, and integrates threat modeling into development. It involves constant validation, accurate flow analysis, and thorough documentation. By using F5 NGINX App Protect WAF, which includes bot defense, web applications can effectively prevent bot-driven attacks, identifying and blocking them early to protect against fraudulent transactions. The attack request is recorded in the security log, indicating that the attack type is Non-browser Client. The request was blocked, and the violation stating “VIOL_BOT_CLIENT”. Note: The security log shown in the image below is the default log configuration Request captured in NGINX App Protect security log A05:2021-Security Misconfiguration Problem statement: Security misconfiguration occurs when security settings are improperly configured, exposing web applications to various threats. One such vulnerability is Cross-Site Request Forgery (CSRF), where attackers trick authenticated users into making unauthorized requests. Without proper protection mechanisms, attackers can exploit this misconfiguration to perform malicious actions on behalf of the user. The demonstration using WebGoat below shows how an improperly configured application becomes vulnerable to CSRF, allowing attackers to carry out unauthorized actions. Execute the above malicious script by copying the file path and pasting in new tab of the WebGoat authenticated browser. The script will automatically load the malicious code and redirects to the vulnerable page. Solution: F5 NGINX App Protect WAF provides a comprehensive support against CSRF attack. Users can configure the CSRF policy based on their requirements by following the configuration settings here. In this demonstration, default CSRF policy is used to block the attack. Default CSRF policy used to block CSRF attacks The security log captures the attack request, identifying the type of attack which is CSRF. The request was successfully blocked, and the violations saying “CSRF attack detected” is also visible. A06:2021-Vulnerable and Outdated Components Problem statement: Vulnerable and Outdated Components risk arises when a web application uses third-party libraries or software with known security vulnerabilities that are not updated. Additionally, vulnerable pages like “phpmyadmin.php” that expose sensitive details—such as application versions, user credentials, and database information—further increase the risk. Attackers can use this information to exploit known vulnerabilities or gain unauthorized access, leading to potential data breaches or system compromise. Solution: The vulnerability discussed above can be mitigated using F5 NGINX App Protect WAF Attack Signatures, which includes specific "Signature ID" for various vulnerabilities. These Signature IDs can be incorporated into the policy file to block attacks. For instance, Signature ID 200000014 can be used to block access to phpmyadmin.php page. Attack signatures can be found here. The attack request is recorded in the security log, indicating that the attack type is Predictable Resource Location. The request was blocked, and the signatures responsible for detecting the “/phpmyadmin/ page” attack are also visible. A07:2021-Identification and Authentication Failures Problem statement: Effective authentication and secure session management are crucial in preventing authentication-related vulnerabilities in daily tasks. Applications with weak authentication mechanisms are vulnerable to automated attacks, such as credential stuffing, where attackers use wordlists to perform spray attacks, allowing attackers to determine whether specific credentials are valid, thus increasing the risk of brute-force and other automated attacks. Brute force attacks are attempts to break in to secured areas of a web application by trying exhaustive, systematic, username/password combinations to discover legitimate authentication credentials. Solution: To prevent brute force attacks, F5 NGINX App Protect WAF monitors IP addresses, usernames, and the number of failed login attempts beyond a maximum threshold. When brute force patterns are detected, the F5 NGINX App Protect WAF policy either trigger an alarm or block the attack if the failed login attempts reached a maximum threshold for a specific username or coming from a specific IP address. Note – Brute force attack prevention is supported starting from versions v4.13 and v5.5 The security log captures the attack request, identifying the type of attack as Brute Force Attack. The request was successfully blocked, and the “VIOL_BRUTE_FORCE” violations is also visible. A08:2021-Software and Data Integrity Failures Problem statement: Added as a new entry in the OWASP Top 10 2021, software and data integrity failures, particularly in the context of insecure deserialization, occur when an application deserializes untrusted data without proper validation or security checks. This vulnerability allows attackers to modify or inject malicious data into the deserialization process, potentially leading to remote code execution, privilege escalation, or data manipulation. In this demonstration, a serialized PHP command O:18:"PHPObjectInjection":1:{s:6:"inject";s:18:"system ('ps -ef');";} is passed in the URL to retrieve the running processes. Solution: F5 NGINX App Protect WAF can prevent Serialization Injection PHP attacks by leveraging its default policy bundle, which includes an extensive set of signatures specifically designed to address deserialization vulnerabilities. The security log captures the attack request, identifying the type of attack. The request was successfully blocked, and the signatures used to detect the 'PHP Short Object Serialization Injection' attack are also visible. A09:2021-Security Logging and Monitoring Failures Problem statement: Security logging and monitoring failures occur when critical application activities such as logins, transactions, and user actions are not adequately logged or monitored. This lack of visibility makes it difficult to detect and respond to security breaches, attack attempts, or suspicious user behavior. Without proper logging and monitoring, attackers can exploit vulnerabilities without detection, potentially leading to data loss, revenue impact, or reputational damage. Insufficient logging also hinders the ability to escalate and mitigate security incidents effectively, making the application more vulnerable to exploitation. Solution: F5 NGINX App Protect WAF provides different options to track logging details of applications for end-to-end visibility of every request both from a security and performance perspective. Users can change configurations as per their requirements and can also configure different logging mechanisms with different levels. Check the links below for more details on logging: Version 4 and earlier Version 5 A10:2021-Server-Side Request Forgery Problem statement: Server-Side Request Forgery (SSRF) occurs when a web application fetches a remote resource without properly validating the user-supplied URL. This vulnerability allows attackers to manipulate the application into sending malicious requests to internal systems or external resources, bypassing security measures like firewalls or VPNs. SSRF attacks can expose sensitive internal data or resources that are not meant to be publicly accessible, making them a significant security risk, especially with modern cloud architectures. In this demonstration, patient health records, which should be accessible only within the network, can be retrieved publicly through SSRF. Solution: Server-Side Request Forgery (SSRF) attacks can be prevented by utilizing the default policy bundle of F5 NGINX App Protect WAF, which includes a comprehensive set of signatures designed to detect and mitigate SSRF vulnerabilities. By enabling App Protect, you gain strong defense against SSRF attacks as well as other prevalent security threats, thanks to the default policy's pre-configured signatures that cover a wide range of attack vectors. The security log captures the attack request, identifying the type of attack. The request was successfully blocked, and the signatures used to detect the 'SSRF' attack are also visible. Request captured in NGINX App Protect security log Conclusion: Protecting applications from attacks is simple with F5 NGINX App Protect WAF, a high-performance, lightweight, and platform-agnostic solution that supports diverse deployment options, from edge load balancers to Kubernetes clusters. By leveraging its advanced security controls, organizations can effectively mitigate the OWASP Web Application Security Top 10 risks, ensuring robust protection across distributed architectures and hybrid environments. Ultimately, F5 NGINX App Protect helps strengthen overall security, providing comprehensive defense for modern applications. References: F5 NGINX App Protect WAF OWASP Top 10 - 2021 F5 NGINX App Protect WAF Documentation F5 Attack Signatures200Views2likes2CommentsF5 AI Gateway - Secure, Deliver and Optimize GenAI Apps
AI has revolutionized industries by automating tasks, enabling data-driven decisions, and enhancing efficiency and innovation. While it offers businesses a competitive edge by streamlining operations and improving customer experiences, it also introduces risks such as security vulnerabilities, data breaches, and cost challenges. Businesses must adopt robust cybersecurity measures and carefully manage AI investments to balance benefits with risks. F5 provides comprehensive controls to protect AI and IT infrastructures, ensuring sustainable growth in an AI-driven world. Welcome to F5 AI Gateway - a runtime security and traffic governance solution807Views5likes1CommentMitigate OWASP LLM Security Risk: Sensitive Information Disclosure Using F5 NGINX App Protect
This short WAF security article covered the critical security gaps present in current generative AI applications, emphasizing the urgent need for robust protection measures in LLM design deployments. Finally we also demonstrated how F5 Nginx App Protect v5 offers an effective solution to mitigate the OWASP LLM Top 10 risks.346Views2likes0Comments